Resumen de Sección: Diagnóstico y Detección

Printed from https://www.cancerquest.org/es/para-los-pacientes/deteccion-y-diagnosis/deteccion-y-diagnosis-resumen on 12/11/2025

D&DSummary.jp	g			

La detección y las pruebas

- La detección del cáncer en sus etapas tempranas es indispensable para la prevención de complicaciones relacionadas a la salud
- Al realizarse una prueba de detección para una enfermedad, existen cuatro posibilidades relacionadas a los resultados:
 - o <u>Verdaderos positivos</u> la prueba indica que el paciente padece de la enfermedad que realmente tiene.
 - Falsos positivos la prueba indica que el paciente padece de la enfermedad cuando no la tiene.
 - <u>Verdaderos negativos</u> la prueba indica que el paciente no padece de la enfermedad cuando el mismo caso se cumple en la realidad.
 - <u>Falsos negativos</u> la prueba indica que el paciente está sano cuando en realidad el paciente padece de la enfermedad.

Sensibilidad y especificidad

- Las pruebas médicas se caracterizan por dos rasgos, la sensibilidad y la especificidad.
- La sensibilidad se refiere a la precisión con la que una prueba identifica a las personas que sufren de la enfermedad.
- La especificidad se refiere a la precisión con la que una prueba identifica a las personas que no sufren la enfermedad.
- · Las mejores pruebas médicas tienen una alta sensibilidad y alta especificidad.

Técnicas Generales

Una gran variedad de técnicas se emplean en la detección de cáncer, incluyendo a:

- Técnicas no invasivas
 - o Ultrasonido: utiliza la reflexión de las ondas sonoras para crear una imagen de una parte del cuerpo
 - o Resonancia Magnética: utiliza campos magnéticos y ondas de radio para producir imágenes del cuerpo.
 - <u>Tomografías PET:</u> utiliza moléculas radiactivas para crear una imagen dinámica de los tejidos y órganos. La PET es capaz de medir la actividad metabólica de las células, además de sus rasgos estructurales.
 - <u>Tomografía computarizada:</u> utiliza los rayos X para tomar imágenes con cortes múltiples, con el fin de crear una imagen en tres dimensiones.
 - Los rayos X utilizan rayos de alta energía para crear una imagen.
- Técnicas invasivas
 - Aspiración con aguja fina (FNA): utiliza una aguja para tomar pequeñas muestras de una lesión.
 - o Biopsia con aquia hueca (BPA): utiliza una aquia más grande para recoger muestras de una lesión.
- Análisis de muestras de biopsias
 - <u>Análisis inmunohistoquímico (IHC):</u> mide los niveles de ciertas proteínas utilizando anticuerpos con especificidades particulares
 - Hibridación fluorescente in situ (FISH): mide la evolución genética (p.e. amplificación) usando sondas del ADN con marcadores de fluorescencia.

Técnicas específicas al cáncer

Algunas técnicas de detección se utilizan para detectar algunos tipos específicos de cáncer. Los ejemplos incluyen:

- Mamografía: utiliza dosis bajas de ravos X para crear una imagen del seno.
- Sigmoidoscopía: utiliza un tubo pequeño que contiene equipos de visualización para visualizar el colon.
- <u>Colonoscopia virtual</u>: usa una resonancia magnética o una tomografía computarizada para crear una imagen del interior del colon.
- <u>Papanicolaou</u>: utiliza una muestra de células del cuello uterino para detectar el cáncer de cuello uterino. El Papanicolau también puede detectar el cáncer de ovario y de útero que han emigrado al cuello uterino.
- Antígeno específico de la próstata (PSA): mide los niveles de glicoproteína en la sangre. Los niveles elevados de PSA pueden estar asociados con el cáncer de próstata.